Branched polymers attached in a wedge geometry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 20 L515
(http://iopscience.iop.org/0305-4470/20/8/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:29

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Branched polymers attached in a wedge geometry

S A Colby†, D S Gaunt, G M Torrie \ddagger and S G Whittington§
† Department of Physics, King's College, Strand, London WC2R 2LS, UK
\ddagger Department of Mathematics and Computer Science, Royal Military College, Kingston, K7L 2W3 Canada
§ Department of Chemistry, University of Toronto, Toronto, M5S 1A1 Canada

Received 16 February 1987

Abstract

We use exact enumeration and Monte Carlo techniques to test some recent predictions by Duplantier and Saleur of the values of the critical exponent γ for uniform star-branched polymers in a wedge geometry in two dimensions. Our results support their predictions.

We have also estimated the exponent ν and amplitude governing the n dependence of the mean square radius of gyration and the mean square end-to-end branch length. In some cases the branches are distinguished and have different mean lengths but the exponent ν is equal to the bulk self-avoiding walk value in every case.

The excluded volume effect in branched polymer molecules has attracted considerable attention over the last few years. The particular case of uniform star-branched polymers has been considered in detail (Daoud and Cotton 1982, Miyake and Freed 1983, Wilkinson et al 1986, Whittington et al 1986). The statistics, in particular, have been investigated by renormalisation group (Miyake and Freed 1983) and by exact enumeration and Monte Carlo methods (Wilkinson et al 1986).

If the number of uniform f-stars with n vertices in each of the f branches is $s_{n}(f)$, one expects that

$$
\begin{equation*}
s_{n}(f) \sim n^{\gamma(f)-1} \lambda(f)^{n} \tag{1}
\end{equation*}
$$

where $\lambda(f)$ has been shown (Wilkinson et al 1986) to be μ^{f}, where μ is the growth constant of self-avoiding walks. The exponent $\gamma(f)$ has been estimated numerically (Wilkinson et al 1986) for small f, and by renormalisation group methods (Miyake and Freed 1983). Recently Duplantier (1986) has made use of conformal invariance arguments to preduct values of $\gamma(f)$ in two dimensions. These predictions are in quite good agreement with the numerical estimates.

Duplantier and Saleur (1986) have now generalised these results to stars in a wedge of angle α, with the f-star being attached at the apex of the wedge either by a vertex of degree 1 or f.

For all f the number of stars attached by a vertex at the wedge apex is expected to have an asymptotic behaviour analogous to (1). Using the methods of Hammersley and Whittington (1985) and Chee and Whittington (1987), it is easy to prove that $\lambda(f)=\mu^{f}$ for a wide class of situations including all those considered in this paper.

The particular case $f=1$ corresponds to self-avoiding walks which have been investigated for $\alpha=\pi$ by Barber et al (1978) and for $\alpha=\pi / 2$ and $\pi / 4$ by Guttmann and Torrie (1984). The agreement between these numerical results and the predictions of Duplantier and Saleur is excellent.

For $f>1$ we have tested the theoretical predictions for a variety of cases and present here results for the situations shown in figure 1 . These include two modes of attachment for a 3 -star in a half-space, and a 2 -star in a wedge of angle α for $\alpha=\pi / 2,2 \pi / 3$ and π.

In table 1 we present exact enumeration data for 2-stars on the square and triangular lattices for three values of α. We have analysed these data by standard ratio methods (Gaunt and Guttmann 1974) and give typical plots in figure 2. The series are converged

Figure 1. (a) 2-star in a wedge of angle $\alpha,(b)$ and (c) two modes of attachment for a 3 -star in a half-space.

Table 1. Exact enumeration data for 2 -stars in a wedge of angle $\alpha=\pi / 2,2 \pi / 3, \pi$ on the square and triangular lattices.

n	Square		Triangular		
	$\pi / 2$	π	$\pi / 2$	$2 \pi / 3$	π
1	1	3	1	3	6
2	3	14	5	22.	66
3	10	76	43	248	919
4	51	482	467	3164	13645
5	250	3002	5365	42136	206391
6	1356	19130	66179	582024	3193827
7	7164	121580	850323	8303686	50236630
8	39990	788430	11338710	121174262	799178388
9	224859	5124180	155539357	1800174204	
10	1301942	33625482	2179959661		
11	7597242	221243104			
12	45115150	1464558768			
13	269987850				
14	1635631662				

Figure 2. Ratio estimates of γ as calculated from $\gamma_{n}=1+n\left[\left(s_{n} / s_{n-1} \mu^{2}\right)-1\right]$ for 2 -stars on the square (\square) and triangular (\triangle) lattices. Plots (A), (B) and (C) correspond to $\alpha=\pi$, $2 \pi / 3$ and $\pi / 2$, respectively.
and we estimate

$$
\begin{array}{ll}
\gamma_{2,2}(\pi / 2)=-1.15 \pm 0.05 & {\left[-1 \frac{5}{32}=-1.15625\right]} \\
\gamma_{2,2}(2 \pi / 3)=-0.40 \pm 0.05 & {\left[-\frac{13}{32}=-0.40625\right]} \\
\gamma_{2,2}(\pi)=0.35 \pm 0.05 & {\left[\frac{11}{32}=0.34375\right]} \tag{4}
\end{array}
$$

where the first subscript on γ indicates the functionality of the stars and the second indicates the degree of the apicial vertex. The predictions of Duplantier and Saleur are given in square brackets for comparison.

The analogous series which we have derived for 3 -stars are too short to allow reliable extrapolation. This has led us to estimate the numbers of 3 -stars (as well as 2 -stars) on the triangular and square lattices, using an inversely restricted Monte Carlo approach (Rosenbluth and Rosenbluth 1955) with sample sizes up to 2×10^{7}. If $s_{n}(f)$ behaves as in (1), we note that a plot of $\ln \left[s_{n}(f) / \mu^{n f}\right] / \ln (n f)$ against $1 / \ln (n f)$ will approach $\gamma-1$ linearly as $n \rightarrow \infty$. In figure 3 we present corresponding plots for the topologies and modes of attachment shown in figure 1. For each of the cases of 2 -stars, the values of γ estimated from this graph are in good agreement with the series estimates given in (2)-(4). We are therefore confident that this method of analysing the Monte Carlo data can give reliable results.

For the two modes of attachment of 3 -stars we estimate

$$
\begin{array}{ll}
\gamma_{3,1}(\pi)=0.68 \pm 0.05 & {\left[\frac{43}{64}=0.671 \ldots\right]} \\
\gamma_{3,3}(\pi)=-0.82 \pm 0.05 & {\left[-\frac{53}{64}=-0.828 \ldots\right]} \tag{6}
\end{array}
$$

In all cases which we have considered (see (2)-(6)), the values of Duplantier and Saleur lie within our estimated error bars and we believe that this provides strong support for the general validity of their predictions.

Figure 3. Monte Carlo estimates of $\gamma-1$ for the square (\square and \diamond) and triangular (Δ) lattices. 2 -stars for (A) $\alpha=\pi / 2$, (B) $\alpha=2 \pi / 3$, (C) $\alpha=\pi$; 3-stars in a half-space with the modes of attachment shown in (D) figure $1(c)$, and (E) figure $1(b)$.

We now turn to consider the dimensions of the branches of these attached stars. We have generated Monte Carlo data for the mean square lengths of the branches, $\left\langle R_{n}^{2}\right\rangle$, and estimated the exponent ν, assuming that

$$
\begin{equation*}
\left\langle R_{n}^{2}\right\rangle \sim B n^{2 \nu} . \tag{7}
\end{equation*}
$$

In each case the evidence suggests that $\nu=\frac{3}{4}$, the value for a self-avoiding walk (Nienhuis 1982) and for unconfined stars (Whittington et al 1986). However, we would expect the amplitude (B) to reflect the confining geometry and the mode of attachment. Indeed, in some cases, different branches in the same star should be expanded by different amounts (e.g. figure $1(c)$).

In figure 4 we plot $\left\langle R_{n}^{2}\right\rangle / n^{1.5}$ against n for 2 -stars in a half-space and for both types of branches for the 3 -star shown in figure $1(c)$. For comparison, we include results for a self-avoiding walk in a half-space (Guttmann et al 1978). The branches of a 2-star in a half-space are noticeably more expanded than for a self-avoiding walk in a half-space, reflecting the interference between the branches. In the case of the 3 -star (figure $1(c)$) the branch containing the attaching vertex is more expanded than the 'free' branches, more expanded than an attached self-avoiding walk and, less obviously, more expanded than the branches of a 2 -star in a half-space. The 'free' branches have dimensions very similar to those of unconstrained 3 -stars (Whittington et al 1986). For small n, the unconstrained case is slightly less expanded while for larger n the opposite is true. For large n the expansion of the 'attached' branch leads to less interference between the 'free' branches, while at small n the interaction of the 'free' branches with the surface still seems to be important. In addition, the 'free' branches of the 3 -star are slightly more expanded than a self-avoiding walk in a half-space, although the limiting amplitudes are clearly very similar.

Figure 4. Mean square end-to-end length of a branch scaled by $n^{1.5}$ as a function of the branch length n for the square lattice. Exact enumeration data (\times) for a self-avoiding walk in a half-space, together with Monte Carlo data for a 2 -star in a half-space ($\left.{ }^{(}\right)$and for the 'attached' (\square) and 'free' (O) branches of the 3 -star in figure $1(c)$.

Finally, we have calculated the mean square radius of gyration $\left\langle S_{N}^{2}\right\rangle$, where $N=$ $1+n f$, for several of the cases discussed above. The most interesting is probably the 3 -star in figure $1(c)$ where one branch is expanded relative to the unconstrained 3 -star and, for large n, the other branches are slightly less expanded. We have estimated the amplitude (A) in

$$
\begin{equation*}
\left\langle S_{N}^{2}\right\rangle \sim A N^{1.5} \tag{8}
\end{equation*}
$$

and find $A=0.077 \pm 0.001$. This is larger than the value for an unconstrained 3 -star, $A=0.074 \pm 0.001$ (Whittington et al 1986), so that the expansion of the attached branch, noted above, leads to an increase in $\left\langle S_{N}^{2}\right\rangle$ relative to the unconstrained star.

In summary, we have presented the first numerical estimates of the exponent γ for uniform stars confined to a wedge geometry. Our results support the predictions of Duplantier and Saleur (1987) for these cases and suggest the validity of their more general predictions. We have also investigated the dimensions of the branches of these confined stars and discussed their sensitivity to the geometry and mode of attachment.

We are grateful to NATO (grant no RG85/0067) and NSERC of Canada for partial financial support and SAC thanks the SERC for the award of a studentship.

References

Barber M N, Guttmann A J, Middlemiss K M, Torrie G M and Whittington S G 1978 J. Phys. A: Math. Gen. 111833
Chee M-N and Whittington S G 1987 J. Phys. A: Math Gen. to be published
Daoud M and Cotton J P 1982 J. Physique 43531
Duplantier B 1986 Phys. Rev. Lett. 57941
Duplantier B and Saleur H 1986 Phys. Rev. Lett. 573179

Gaunt D S and Guttmann A J 1974 Phase Transitions and Critical Phenomena vol 3, ed C Domb and M S Green (New York: Academic) p 181
Guttmann A J, Middlemiss K M, Torrie G M and Whittington S G 1978 J. Chem. Phys. 695375
Guttmann A J and Torrie G M 1984 J. Phys A: Math. Gen. 173539
Hammersley J M and Whittington S G 1985 J. Phys. A: Math. Gen. 18101
Miyake A and Freed K F 1983 Macromol. 161228
Nienhuis B 1982 Phys. Rev. Lett. 491062
Rosenbluth M N and Rosenbluth A W 1955 J. Chem. Phys. 23356
Whittington S G, Lipson J E G, Wilkinson M K and Gaunt D S 1986 Macromol. 191241
Wilkinson M K, Gaunt D S, Lipson J E G and Whittington S G 1986 J. Phys. A: Math. Gen. 19789

