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LETTER TO THE EDITOR 

Branched polymers attached in a wedge geometry 
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$ Department of Mathematics and Computer Science, Royal Military College, Kingston, 
K7L 2W3 Canada 
0 Department of Chemistry, University of Toronto, Toronto, M5S 1Al Canada 
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Abstract. We use exact enumeration and Monte Carlo techniques to test some recent 
predictions by Duplantier and Saleur of the values of the critical exponent y for uniform 
star-branched polymers in a wedge geometry in two dimensions. Our results support their 
predictions. 

We have also estimated the exponent v and amplitude governing the n dependence of 
the mean square radius of gyration and the mean square end-to-end branch length. In 
some cases the branches are distinguished and have different mean lengths but the exponent 
v is equal to the bulk self-avoiding walk value in every case. 

The excluded volume effect in branched polymer molecules has attracted considerable 
attention over the last few years. The particular case of uniform star-branched polymers 
has been considered in detail (Daoud and Cotton 1982, Miyake and Freed 1983, 
Wilkinson et al 1986, Whittington et a1 1986). The statistics, in particular, have been 
investigated by renormalisation group (Miyake and Freed 1983) and by exact enumer- 
ation and Monte Carlo methods (Wilkinson et al 1986). 

If the number of uniformf-stars with n vertices in each of thef branches is s,(f), 
one expects that 

where A ( f )  has been shown (Wilkinson et a1 1986) to be pf, where p is the growth 
constant of self-avoiding walks. The exponent ~ ( f )  has been estimated numerically 
(Wilkinson et a1 1986) for small f, and by renormalisation group methods (Miyake 
and Freed 1983). Recently Duplantier (1986) has made use of conformal invariance 
arguments to preduct values of ~ ( f )  in two dimensions. These predictions are in quite 
good agreement with the numerical estimates. 

Duplantier and Saleur (1986) have now generalised these results to stars in a wedge 
of angle a, with the f-star being attached at the apex of the wedge either by a vertex 
of degree 1 orf :  

For all f the number of stars attached by a vertex at the wedge apex is expected 
to have an asymptotic behaviour analogous to (1). Using the methods of Hammersley 
and Whittington (1985) and Chee and Whittington (1987), it is easy to prove that 
A (f) = pf for a wide class of situations including all those considered in this paper. 
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The particular case f =  1 corresponds to self-avoiding walks which have been 
investigated for Q = a by Barber er a1 (1978) and for Q = 7r/2 and m/4 by Guttmann 
and Tome (1984). The agreement between these numerical results and the predictions 
of Duplantier and Saleur is excellent. 

Forf> 1 we have tested the theoretical predictions for a variety of cases and present 
here results for the situations shown i n  figure 1. These include two modes of attachment 
for a 3-star in a half-space, and a :!-star in a wedge of angle a for a = 712, 2 ~ / 3  
and a. 

In table 1 we present exact enumeration data for 2-stars on the square and triangular 
lattices for three values of a. We have analysed these data by standard ratio methods 
(Gaunt and Guttmann 1974) and give typical plots in figure 2. The series are converged 

Figure 1. (a )  2-star in a wedge of angle a, ( b )  and ( e )  two modes of attachment for a 
3-star in a half-space. 

Table 1. Exact enumeration data for 2-stars in a wedge of angle CY = n / 2 ,  2 ~ 1 3 ,  n on the 
square and triangular lattices. 

Square Triangular 

n VI2 n 5712 2 n / 3  n 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

1 3 
3 14 

10 76 
51 482 

250 3 002 
1356 19 130 
7 164 121 580 

39 990 788 430 
224 859 5 124 180 

1301 942 33 625 482 
7 597 242 221 243 104 

45 115 150 1464558768 
269 987 850 

1635631662 

1 
5 

43 
467 

5 365 
66 179 

850 323 
11338710 

155 539 357 
2179959661 

3 
22 

248 
3 164 

42 136 
582 024 

8 303 686 
121 174 262 

1800174204 

6 
66 

919 
13 645 

206 391 
3 193 827 

50 236 630 
799 178 388 
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Figure 2. Ratio estimates of y as calculated from yn = 1 + n[(s,/s,-lfi2) - 11 for 2-stars on 
the square (0) and triangular (A)  lattices. Plots (A), ( B )  and (C) correspond to (I = r, 
2 r / 3  and r / 2 ,  respectively. 

and we estimate 

y2,2(7~/2)=-1.15*0.05 [-1A= -1.156 251 

?2,2(27T/3) = -0.40i0.05 

y2,2( T )  = 0.35 * 0.05 

[ -%= -0.406 251 

[g = 0.343 751 
where the first subscript on y indicates the functionality of the stars and the second 
indicates the degree of the apicial vertex. The predictions of Duplantier and Saleur 
are given in square brackets for comparison. 

The analogous series which we have derived for 3-stars are too short to allow 
reliable extrapolation. This has led us to estimate the numbers of 3-stars (as well as 
2-stars) on the triangular and square lattices, using an inversely restricted Monte Carlo 
approach (Rosenbluth and Rosenbluth 1955) with sample sizes up to 2 x 10’. If s,(f) 
behaves as in ( l ) ,  we note that a plot of ln[s,(f)/pnf]/ln(nf) against l/ln(nf) will 
approach y - 1 linearly as n +CO. In figure 3 we present corresponding plots for the 
topologies and modes of attachment shown in figure 1. For each of the cases of 2-stars, 
the values of y estimated from this graph are in good agreement with the series estimates 
given in (2)-(4). We are therefore confident that this method of analysing the Monte 
Carlo data can give reliable results. 

For the two modes of attachment of 3-stars we estimate 

y3,1( T )  = 0.68 f 0.05 [g = 0.671 . . .] 
73 ,3 (  T )  = -0.82 * 0.05 [-% = -0.828 . . .I. 

In all cases which we have considered (see (2)-(6)), the values of Duplantier and 
Saleur lie within our estimated error bars and we believe that this provides strong 
support for the general validity of their predictions. 
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Figure3. Monte Carlo estimates of y - 1  for the square (0 and 0) and triangular ( A )  
lattices. 2-stars for (A) a = ~ / 2 ,  ( B )  a = 2 ~ 1 3 ,  (C) a = T ;  3-stars in a half-space with the 
modes of attachment shown in (D) figure l (c ) ,  and ( E )  figure l ( b ) .  

We now turn to consider the dimensions of the branches of these attached stars. 
We have generated Monte Carlo data for the mean square lengths of the branches, 
( R i ) ,  and estimated the exponent v, assuming that 

( R ; ) -  Bn’”. (7) 

In each case the evidence suggests that v = :, the value for a self-avoiding walk 
(Nienhuis 1982) and for unconfined stars (Whittington er a1 1986). However, we would 
expect the amplitude ( B )  to reflect the confining geometry and the mode of attachment. 
Indeed, in some cases, different branches in the same star should be expanded by 
different amounts (e.g. figure l (c ) ) .  

In figure 4 we plot (R; ) /n ’ . ’  against n for 2-stars in a half-space and for both types 
of branches for the 3-star shown in figure l (c) .  For comparison, we include results 
for a self-avoiding walk in a half-space (Guttmann er a1 1978). The branches of a 
2-star in a half-space are noticeably more expanded than for a self-avoiding walk in 
a half-space, reflecting the interference between the branches. In the case of the 3-star 
(figure l (c))  the branch containing the attaching vertex is more expanded than the 
‘free’ branches, more expanded than an attached self-avoiding walk and, less obviously, 
more expanded than the branches of a 2-star in a half-space. The ‘free’ branches have 
dimensions very similar to those of unconstrained 3-stars (Whittington er a1 1986). 
For small n, the unconstrained case is slightly less expanded while for larger n the 
opposite is true. For large n the expansion of the ‘attached’ branch leads to less 
interference between the ‘free’ branches, while at small n the interaction of the ‘free’ 
branches with the surface still seems to be important. In addition, the ‘free’ branches 
of the 3-star are slightly more expanded than a self-avoiding walk in a half-space, 
although the limiting amplitudes are clearly very similar. 
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Figure4. Mean square end-to-end length of a branch scaled by n‘.’ as a function of the 
branch length n for the square lattice. Exact enumeration data ( x ) for a self-avoiding 
walk in a half-space, together with Monte Carlo data for a 2-star in a half-space (0) and 
for the ‘attached’ (0 )  and ‘free’ (0) branches of the 3-star in figure l(c). 

Finally, we have calculated the mean square radius of gyration ( S L ) ,  where N = 
1 + nf, for several of the cases discussed above. The most interesting is probably the 
3-star in figure 1( c )  where one branch is expanded relative to the unconstrained 3-star 
and, for large n, the other branches are slightly less expanded. We have estimated the 
amplitude ( A )  in 

(SZ,) - AN’.’ (8) 

and find A = 0.077 f 0.001. This is larger than the value for an unconstrained 3-star, 
A = 0.074* 0.001 (Whittington et a1 1986), so that the expansion of the attached branch, 
noted above, leads to an increase in (Sh) relative to the unconstrained star. 

In summary, we have presented the first numerical estimates of the exponent y for 
uniform stars confined to a wedge geometry. Our results support the predictions of 
Duplantier and Saleur (1987) for these cases and suggest the validity of their more 
general predictions. We have also investigated the dimensions of the branches of these 
confined stars and discussed their sensitivity to the geometry and mode of attachment. 

We are grateful to NATO (grant no RG85/0067) and NSERC of Canada for partial 
financial support and SAC thanks the SERC for the award of a studentship. 
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